
CS266 Software Reverse Engineering (SRE)

Applying Anti-Reversing Techniques to Machine Code

Teodoro (Ted) Cipresso, teodoro.cipresso@sjsu.edu

Department of Computer Science

San José State University

Spring 2015

The information in this presentation is taken from the thesis ñSoftware reverse engineering educationò
available at http://scholarworks.sjsu.edu/etd_theses/3734/ where all citations can be found.

mailto:teodoro.cipresso@sjsu.edu
http://scholarworks.sjsu.edu/etd_theses/3734/

Applying Anti-Reversing Techniques to Machine Code

Introduction, Motivation, and Considerations

¹ Extreme care must be taken when applying anti - reversing techniques because
most techniques ultimately change the machine code.

¹ In the end, if a program does not run correctly, measuring how efficient or
difficult to reverse engineer it is becomes meaningless [18].

¹ Anti - reversing transformations performed on source code make a program
more difficult to understand in both source and executable formats.

¸ These transforms can expose compiler bugs because the program no longer
looks like something a human would write.

¸ [18] states ñany compiler is going to have at least some pathological
programs which it will not compile correctly .ò

2

http://www.geraldmweinberg.com/Site/Programming_Psychology.html
http://www.geraldmweinberg.com/Site/Programming_Psychology.html

Applying Anti-Reversing Techniques to Machine Code

Introduction, Motivation, and Considerations

¹ Compiler failures on ñpathologicalò programs occur because compiler test cases
are most often coded by people.

¹ Test cases are not typically generated by some sophisticated tool that knows
how to try every fringe case and surface every bug.

¹ Therefore we should not be surprised if some compilers have difficulty with
obfuscated source code .

¹ We now investigate the technique Eliminating Symbolic Information as it
applies to machine code.

¸ We previously looked at this technique in Applying Anti -Reversing
Techniques to Java Bytecode .

3

http://cipressosjsu.info/CS266/pdf/3_antireversing_java_bytecode.pdf

Applying Anti-Reversing Techniques to Machine Code

Eliminating Symbolic Information in Machine Code

¹ Eliminating Symbolic Information calls for the removal of any meaningful
symbolic information in machine code that is not important to the execution of
the program, but serves to ease debugging or reuse of it by another program.

¸ For example, if a Windows program references functions (methods)
exported by one or more libraries (DLLs), the names of those methods will
appear in the .idata (import data) section of the program binary.

¹ In production versions of a program, the machine code doesn't directly contain
any symbolic information from the original source code. In the executable:

¸ Method names, variable names (etc..), and line numbers are all absent.

¸ Only the machine instructions produced directly or indirectly by the
compiler [9] are present.

4

http://cipressosjsu.info/CS266/pdf/an_introduction_to_gcc.pdf

Applying Anti-Reversing Techniques to Machine Code

Eliminating Symbolic Information in Machine Code

¹ This lack of information about the connection between the machine instructions
and HLL source is unacceptable for purposes of debugging.

¸ Therefore most modern compilers, like GCC, include an option to include
debugging information into an executable.

¸ The included debugging information allows a debugger to map one or more
machine instructions back to a particular HLL statement [9].

¹ To demonstrate symbolic information that is inserted into machine code to
enable debugging of an application:

¸ Calculator.cpp was compiled using the GNU C++ compiler (g++) with
options to include debugging information and to generate assembly source
instead of an executable (machine code).

5

http://cipressosjsu.info/CS266/pdf/an_introduction_to_gcc.pdf
https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html

Applying Anti-Reversing Techniques to Machine Code

Eliminating Symbolic Information in Machine Code

6

Calculator.cpp

http://cipressosjsu.info/CS266/zip/Calculator.zip
http://cipressosjsu.info/CS266/zip/Calculator.zip

Applying Anti-Reversing Techniques to Machine Code

Eliminating Symbolic Information in Machine Code

¹ The GNU compiler stores debug information in the symbol tables (.stabs)
section of the Windows PE header so that it will be loaded into memory as part
of the program image.

¹ The generated assembly language files CalculatorDebug.s on the next slide
shows some of the debugging information inserted by GCC.

¸ While this information is not a replacement for the original source code it
does provide some helpful information to a reverser.

¸ The GNU Project Debugger (GDB) is a source - level debugger and therefore
must access the HLL source file to make use of the debugging information.

7

Applying Anti-Reversing Techniques to Machine Code

Eliminating Symbolic Information in Machine Code

8

CalculatorDebug.cpp

Applying Anti-Reversing Techniques to Machine Code

Eliminating Symbolic Information in Machine Code

¹ Debugging information can give plenty of hints to a reverse engineer, such as
the count and type of parameters one must pass to a given method.

¹ An obvious recommendation is to ensure the code is not compiled with
debugging information before shipment to end -users.

¹ The hunt for symbolic information doesn't end with information embedded by
debuggers; actually it rarely begins there.

¹ Eliminating symbolic information in machine code is difficult, therefore weôll
manually implement some familiar techniques to obfuscate the information.

¹ First, we will take a detour to look at obfuscation of source code and what use
cases it might address.

9

Applying Anti-Reversing Techniques to Machine Code

Source Code Obfuscation

¹ Obfuscating the Program calls for performing transformations to the source or
machine code that would render either code extremely difficult to understand
but functionally equivalent to the original.

¹ When delivering software to customers, they may require the source code so
that the product can be compiled using in -house build and audit procedures .

¹ In the likely event that the source code contains intellectual property, it can be
obfuscated without changing the the resultant machine code.

¹ To demonstrate source code obfuscation, COBF [23], a free C/C++ source code
obfuscator was configured and given Calculator.cpp.

¸ Stunnix C/C++ is a commercial source code obfuscator.

10

http://www.plexaure.de/cms/index.php?id=cobf
http://www.stunnix.com/prod/cxxo/
http://cipressosjsu.info/CS266/zip/cobf_106.zip
http://cipressosjsu.info/CS266/zip/cobf_106.zip
http://cipressosjsu.info/CS266/zip/Calculator.zip
http://cipressosjsu.info/CS266/zip/Calculator.zip

11

cobf.h

CalculatorObf.cpp

Applying Anti-Reversing Techniques to Machine Code

Basic Obfuscation of Machine Code

¹ [19] states ñObfuscation of Java bytecode is possible for the same reasons that
decompiling is possible: Java bytecode is standardized and well documented.ò

¹ Machine code is not standardized; instruction sets, formats, and program
image layouts vary depending on the target platform architecture.

¹ Tools to assist with obfuscating machine code are much more challenging to
implement and expensive to acquire. (I have not found any free tools) .

¹ EXECryptor is an industrial -strength machine code obfuscator.

¸ When applied to the machine code for the Password Vault application,
EXECryptor rendered it extremely difficult to understand.

¹ EXECryptor fails to start in Windows 8.1 due to an anti -debug error.

12

http://cipressosjsu.info/CS266/pdf/covert_java_techniques_for_decompiling_patching_re.pdf
http://www.strongbit.com/execryptor.asp

Applying Anti-Reversing Techniques to Machine Code

Basic Obfuscation of Machine Code

¹ Direct machine code obfuscations can be hard to analyze or follow, so we'll
perform obfuscations at the source code level and observe differences in the
assembly code generated by the GNU C/C++ compiler.

¹ Success is achieved when an obfuscated program has the same functionality as
the original, but is more difficult to understand during live or static analysis.

¹ There are no standards for code obfuscation, but it's relatively important to
ensure that the obfuscations applied to a program are not easily undone
because deobfuscation tools can be used to eliminate easily identified
obfuscations [5].

¹ We now look at the source and disassembly for VerifyPassword.cpp , a simple
C++ program that contains a simple if - test for a password.

¸ We then embed a simple cipher to protect sensitive constants.

13

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0764574817.html

Applying Anti-Reversing Techniques to Machine Code

Basic Obfuscation of Machine Code

14

VerifyPassword.cpp

http://www.cipressosjsu.info/CS266/zip/VerifyPassword.zip
http://www.cipressosjsu.info/CS266/zip/VerifyPassword.zip

15

.text
section

.rdata
section

Applying Anti-Reversing Techniques to Machine Code

Basic Obfuscation of Machine Code

16

VerifyPasswordObf.cpp

17

.text
section

.rdata
section

18

http://www.frida.re/

http://www.frida.re/
http://www.cipressosjsu.info/CS266/zip/VerifyPassword.zip
http://www.cipressosjsu.info/CS266/zip/VerifyPassword.zip

19

Run As
Admin

Python
Editor

20

Dump of
.rdata

Start @
0x443000

Run exe in
new window

21

Run Frida
Script

Plaintext
extracted

22

Run As
Admin

Python
Editor

23

Run exe in
new window

Dump of
.rdata

Start @
0x445000

24

Run Frida
Script

Ciphertext
extracted

